Matériel

une cellule photovoltaïque un luxmètre 1 voltmètre 1 ampèremètre un rhéostat de $23~\Omega$ une diode une ampoule de faible puissance 60 feuilles de papier calque

I) importance de l'éclairement

1) composition d'une cellule photovoltaïque

Introduction : lire les documents 1 et 2 et 3 p 148 149 Hachette TS spécialité et répondre aux questions de 1 à 5. Lire le document 1 et 2 p 150.

Une cellule photovoltaïque est éclairée par une lampe de bureau distante de 10 cm.

L'éclairement de la lampe est mesuré avec un luxmètre. **Article Wikipédia**: Le **lux** est une unité de mesure de l'éclairement lumineux (symbole : lx) Il caractérise le flux lumineux reçu par unité de surface¹. Un lux est l'éclairement d'une surface qui reçoit, d'une manière uniformément répartie, un flux lumineux d'un lumen par mètre carré: $1 lx = 1 Lm/m^2$.

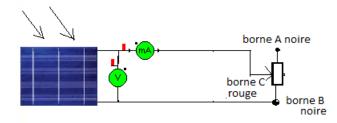
L'appareil de mesure de l'éclairement lumineux est le luxmètre. Il comporte généralement une partie à cellule photosensible et une partie d'affichage. La sensibilité d'un récepteur tel que l'œil ou une caméra vidéo se définit également en lux et correspond généralement au niveau d'éclairement minimum de sensibilité acceptable. Concernant l'œil humain, cette sensibilité diminue d'environ 25 % entre les âges de 20 et 60 ans. L'œil humain peut s'accommoder à des niveaux d'éclairement très variables, de 130 000 lux (une journée ensoleillée d'été) à 1 lux (une nuit de pleine lune). Néanmoins certains niveaux minimaux sont requis : par exemple 5 lux pour se déplacer, 150 lux pour la lecture et l'écriture, etc.

Q1 Mesurer la valeur de l'éclairement du soleil pour avoir une idée de sa valeur.

2) étude expérimentale

Q2 Imaginer un protocole permettant de mettre en évidence l'importance de l'éclairement sur l'intensité du courant débité par la cellule photovoltaïque.

Q3 Quelle conclusion tirez-vous de vos mesures?



Réponse

Q2 Placer une puis 2 puis 3 etc. feuille de papier calque contre la source lumineuse de manière à faire varier la valeur de l'éclairement. On placera la cellule à 10 cm de la source lumineuse. Réaliser le montage suivant

Placer aux bornes de la cellule photovoltaïque un voltmètre.

Noter pour chaque valeur d'éclairement en Lux (lx) la valeur de l'intensité i du courant produit par la cellule. On règlera à R = 23 Ω la valeur de la résistance du rhéostat.

nombre de feuille	0	1	2	3	4	5
éclairement(Lx.10)	350	230	200	170	146	129
i(mA)	19,3	18,7	18,1	17,7	17,3	16,8

Q3 Plus l'éclairement est important plus l'intensité du courant produite par la cellule est importante.

II) caractéristiques de la cellule photovoltaïque

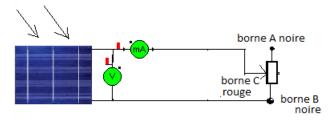
1) tracé de la caractéristique courant-tension i= f(U)

Q1 Imaginer un protocole permettant de tracer la caractéristique intensité-tension i = f(U) de la cellule photovoltaïque. On prendra le cas ou l'éclairement E est maximum.

Q2 Tracer la caractéristique i = f(U). Attention de convertir i en ampère et d'insérer U sur la première ligne du tableur Excel puisqu'il s'agit de la grandeur physique en abscisse. Commenter l'allure de la courbe.

Q3 On distingue 2 types de dipôle électrique: les générateurs et les récepteurs. La caractéristique d'un récepteur passe telle par l'origine? Même question pour un générateur. La cellule est-elle un récepteur ou un générateur?

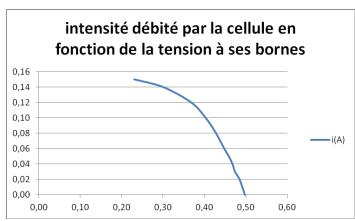
Q4 Icc est l'intensité du courant produite par la cellule quand la tension à ses bornes est nulle. Icc signifie intensité du courant de court circuit. Les bornes de la cellule sont alors reliées par un fil. La résistance électrique du fil étant nulle, on court circuite la cellule (d'ou le nom de courant de court circuit).


La tension en circuit ouvert également appelé tension à vide, est noté Uo. Entre les bornes de la cellule il y a alors une résistance électrique infini (l'air ne conduit pas l'électricité). Uo correspond à la tension aux bornes de la cellule lorsqu'elle ne débite aucun courant.

Déterminer à l'aide de votre courbe la valeur de Uo et de Icc.

Réponse

Q1 Relever la valeur de l'éclairement de la cellule (j'ai trouvé 7500 Lux). Effectuer le montage suivant. Le rhéostat à pour


valeur R = 23 $\,\Omega$. On fera varier sa résistance pour faire varier le courant i débité par la cellule. Pour chaque valeur d'intensité de courant i on notera la tension U aux bornes de la cellule.

Relever la valeur de l'éclairement de la cellule (j'ai trouvé 7500 Lux)

Remarque : la borne A n'est pas reliée au montage.

QZ										
U(V)	0,50	0,49	0,47	0,47	0,46	0,45	0,43	0,40	0,37	0,30
i(mA)	0,00	20,00	30,00	40,00	50,00	60,00	80,00	100,00	120,00	140,00
i(A)	0,00	0,02	0,03	0,04	0,05	0,06	0,08	0,10	0,12	0,14
P(W)	0,00	0,01	0,01	0,02	0,02	0,03	0,03	0,04	0,04	0,04

Allure:

2) tracé de la caractéristique courant-tension P= f(U)

Q7 La puissance électrique fournit par un générateur est donnée par la formule:

P(W) = U(V).i(A)

Ajouter une ligne dans le tableur Excel, tracer la courbe P = f(I) puis la commenter.

Q8 Quelle est la puissance maximale P_{max} fournit par la cellule?

Q9 Le rendement r d'une cellule photovoltaïque est donné par la formule:

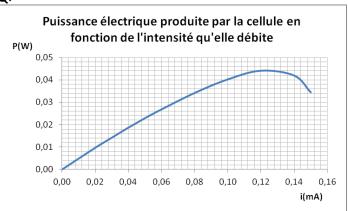
$$r = \frac{P_{max}}{P_{lu\,min\,euse}} = \frac{P}{E.S}$$

 $P_{\text{max}}\!\!:$ puissance électrique maximale en Watt(W) fournit par la cellule

P_{lumineuse}: puissance lumineuse reçue par la cellule en Watt E: éclairement en W.m⁻²

S: surface de la cellule en m².

a) On admettra que 100 lux correspond à un éclairement de 1W.m⁻². Calculer la valeur de l'éclairement E de la cellule


b) Calculer la surface S de la cellule, en déduire la puissance lumineuse reçue par la cellule

c) En déduire la valeur du rendement.

Q10 Peut-on alimenter une ampoule ou une diode avec la cellule?

Réponse

Q7

La puissance électique passe par un maximum pour i = 0,122 A. C'est cette valeur qu'il faudra régler pour utiliser la cellule avec un maximum d'efficacité.

Q8
$$P_{max} = 0.0460 W = 46 mW$$
 Q9

a) Le luxmètre affiche une valeur de 8500 Lux. Par conséquent l'éclairement vaut: E = 8500/100 = 800 W.m⁻².

b) S = II.R² =
$$3,14x(2,25x10^{-2})^2 = 1,96x10^{-3} \text{ m}^2$$

 $P_{\text{lumineuse}} = E.S = 800x1,96x10^{-3} = 1,56 \text{ W}$

c) Le rendement de la cellule vaut:

$$r = \frac{P_{\text{max}}}{P_{\text{lumineuse}}} = \frac{P}{E.S} = \frac{46 \times 10^{-3}}{1,56} = 3.2 \times 10^{-2} = 3.2\%$$

Remarque: le rendement des cellules vendues dans le commerce est d'environ 10%.