(15 pts)

Données:

Masse volumique de l'octane ρ = 750 g.L⁻¹; Masse molaire atomique (en g.mol⁻¹) : H (1,0) / C (12,0) / O (16,0) 1 cheval (vapeur) équivaut à environ 735,5 W

Un constructeur indique les caractéristiques du moteur de la Nissan « Micra Acenta 1.2 » :

- Puissance du moteur : 80 chevaux,
- Consommation mixte: 5,2 L pour 100 km,
- CO_2 : 120 g / km.
- 1) L'essence utilisée pour ce véhicule étant assimilée à de l'octane (C₈H₁₈), déterminer la masse **m** puis la quantité de matière **n** d'octane consommé pour un déplacement de 1 km.
- 2) Ecrire l'équation de la combustion complète de l'octane dans le moteur du véhicule sachant que celle-ci produit du dioxyde de carbone et de la vapeur d'eau.
- 3) En déduire, éventuellement à l'aide d'un tableau d'avancement (même partiel), la quantité de matière **n'** puis la masse **m'** de dioxyde de carbone formé.
- 4) L'information donnée par le constructeur est-elle correcte ?

Dans la suite de l'exercice, la Nissan Micra roule pendant une durée Δt = 45 min à vitesse constante.

5) Calculer l'énergie mécanique E₁ (en J) développée par le moteur du véhicule pendant cette durée.

Le rendement du moteur est r = 35%.

- 6) Calculer l'énergie chimique E₂ fournie par le carburant pendant les 45 min.
- 7) En déduire, à l'aide de la question 1, sachant que le pouvoir calorifique de l'octane est de 5065 kJ.mol⁻¹ à la vitesse de la voiture, le volume d'essence nécessaire pour rouler pendant les 45 min.

La batterie de la voiture (tension : 12 V) correspond, pendant les 45 min, à un générateur délivrant un courant électrique d'intensité I = 2,5 A.

- 8) Calculer la puissance P de la batterie puis l'énergie électrique E (en Wh) fournie pendant les 45 min.
- 9) Schématiser le montage permettant de tracer, au laboratoire, la caractéristique U en fonction de I de la batterie de la voiture, en indiquant brièvement les étapes du protocole et le matériel utilisé.

CORRECTION

3.1	Pour 1 km, $V_{C8H18} = 5.2 \text{ L} / 100 = 0.052 \text{ L}$ donc m = $2 \times V = 750 \times 0.052 = 39 \text{ g}$ donc n = m / M = 39 / 114 $\approx 0.34 \text{ mol}$.	2.5
3.2	$2 C_8 H_{18(g)} + 25 O_2 \longrightarrow 6 CO_{2(g)} + 18 H_2 O_{(g)}$.	1
3.3	Sans tableau, d'après la stœchiométrie de l'équation : $n_{C8H18} / 2 = n_{CO2} / 16$ ce qui donne $n_{CO2} = 8$ x $n_{C8H18} \approx 2.7$ mol ;	2.5
	cela donne m' $\approx 2,7 \times 44 \approx 1,2 \times 10^2$ g.	
	On retrouve ce résultat avec un tableau d'avancement avec $x_{max} = 0.17$ mol.	
3.4	Aux arrondis de calculs près, on retrouve la valeur de 120 g donnée par le constructeur.	0.5
3.5	La puissance du moteur est de P_1 = 80 chevaux = 80 x 735,5 \approx 5,9x10 ⁴ W. On a donc E_1 = P_1 x \mathbb{I} t \approx 5,9x10 ⁴ x 45 x 60 \approx	1.5
	1,6 x10 ⁸ J.	
3.6	Le moteur transforme de l'énergie chimique E_2 (soit 100%) en énergie mécanique E_1 (soit 35%) : on a donc $r = E_1 / E_2$	1.5
	donc $E_2 = E_1 / r \approx 1.6 \times 10^8 / 35\% = 1.6 \times 10^8 / 0.35 \approx 4.5 \times 10^8 J$.	
3.7	Le pouvoir calorifique indique que l'énergie chimique produite avec 1 mol d'octane est de 5065 kJ = 5065 000 J. La	2
	quantité de matière d'octane consommée pendant les 45 min est donc, par un produit en croix de 4,5 x10 ⁸ J / 5065	
	000 J ≈ 90 mol .	
	D'après la question 1 : 0,052 L d'octane correspond à environ 0,34 mol. Les 90 mol d'octane correspondent donc à	
	environ un volume ≈ 90 x 0,34 / 0,052 ≈ 14 L.	
3.8	$P = U \times I = 12 \times 2,5 = 30 \text{ W}$ soit une énergie $E = P \times D = 30 \text{ (en W)} \times 0,75 \text{ (en heure)} \approx 23 \text{ Wh}$.	1.5
3.9	Le montage comprend la batterie (qui fait office de générateur), un ampèremètre et un dispositif permettant de faire	2
	varier l'intensité dans le circuit (potentiomètre ou boitier de résistances). Entre les bornes de la batterie, on branche	
	un voltmètre ou un dispositif (carte sysam par exemple) permettant de mesurer la tension via un logiciel (latispro par	
	exemple). On mesure la tension U et l'intensité I pour différentes positions du potentiomètre et on trace le graphe U =	
	f(I).	