T.P: T.S. SPECTRES I.R ET RMN.

1°) EXPLOITATION DE QUELQUES SPECTRES INFRA ROUGE.

1.1. INTRODUCTION AUX SPECTRES IR.

Liaison	-0-н	-N-H	C	Н	C_tet	+)c=0
σ (cm ⁻¹)	3200 à 3650	3100 à 3500		100	2800 à 300	50.00	1650 à 1750
Liaison)c=c(C _{tet}	Н	-C	- C -	-	¢-0-
σ (cm ⁻¹)	0.0000000000000000000000000000000000000	141 à 147	00.77		000 250		1050 à 1450

1°) La grandeur représentée en ordonnée est la transmittance dont l'unité est le %.

2°) Une transmittance de 100% signifie que l'onde électromagnétique incidente est entièrement transmise (elle n'est pas absorbée par la solution). Une transmittance de 0% correspond à une absorbance de 100% : l'OEM est entièrement absorbée. La référence est la transmittance de 100%, les pics vers le bas indique que les OEM sont partiellement absorbée.

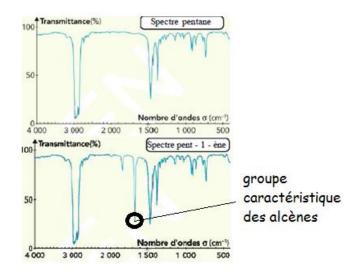
 3°) La grandeur représentée en abscisse est le nombre d'onde dont l'unité est le cm⁻¹ (Le nombre d'onde σ est égale à l'inverse de la longueur d'onde de l'OEM). Cet axe est gradué de manière décroissante.

4°) Les spectres ont été réalisés à des longueurs d'onde appartenant au domaine de l'infrarouge car.

$$\sigma = \frac{1}{\lambda} \Rightarrow \lambda_{min} = \frac{1}{\sigma_{(max)}} = \frac{1}{4000} = 2,5 \times 10^{-4} \text{ cm} = 2,5 \times 10^{-6} \text{ m} > 800 \text{ nm}$$

5°) Quelle information peut-on extraire de la partie du spectre comprenant les plus grandes valeurs de nombres d'onde (supérieures à 1 500 cm⁻¹) ? Le type de liaison présent dans l'espèce chimique inconnue!

6°) Pourquoi n'exploite-t-on généralement pas la partie du spectre relative aux «petits» nombres d'onde (valeurs inférieures à 1 500 cm⁻¹) ? Les valeurs des transmittances sont trop faibles.


1.2. DETERMINATION DU NOMBRE D'ONDE D'UNE FONCTION.

7°)

Pentane

 8°) Comparer le spectre du pentane à celui du pent - 1 - ène et compléter le tableau des nombres d'onde en retrouvant la nombre d'onde caractéristique de la double liaison C = C.

 $\sigma \approx 1700 \text{ cm}^{-1}$

1.3. RECONNAISSANCE DE GROUPES CARACTERISTIQUES.

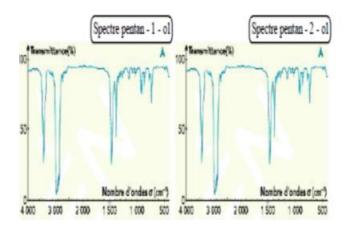
Le document en annexe présente les spectres infrarouge:

- □ pentanal
 □ pentanamide
 □ acide pentanoïque
 □ pentan 3 one
- ☐ propanoate d'éthyl ☐ pentan 1 amine

- permit i mine						
Liaison	-0-н	-N-H	C,	H	C _{tét} F	H)C=0
σ (cm ⁻¹)	3 200 à 3 650	3100 à 3500		100	2800 à 300	
Liaison)c=c(C _{tet}	Н	-¢	<u>-</u>	-4-0-
σ (cm ⁻¹)		141 à 14			000 250	1050 à 1450

 $\sigma(\text{alcène}) \approx 1650 \, \text{cm}^{-1}$

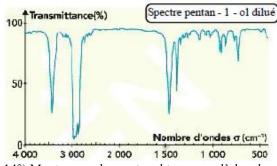
10°) A l'aide du tableau récapitulatif des nombres d'ondes et du spectre du pentane, associer le spectre à chaque molécule.

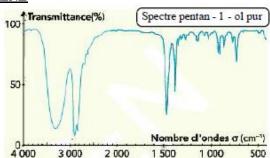

	formule semi-développée		
pentanal	H H H H O	groupe carbonyle	spectre 3 présence des liaisons C _{tet} -H et C=O
acide pentanoïque	H H H O H-C-C-C-C H H H O-H	cgroupe carboxyle	spectre 2 (bande large C _{tet} -H se chevauche avec OH _{lié} pour un nombre d'onde compris entre 2800 et 3200 cm ⁻¹)

pentanamide	<u></u>	✓ N	` H	groupe amide	spectre 4 : C=0, C _{tet} -H ; N-H (2 fois car 2 pics)
propanoate d'éthyle	СН3—С	O :H ₂ — C — O–	-CH ₂ -CH ₃	groupe ester	spectre 5 : C=0 ; C-O ; C _{tet} -H
pentan-3-one	H ₃ C_	CI	H_3	groupe carbonyle	spectre 1 : C_{tet} -H ; C - C ; C = O
pentan-1-amine	<u></u>	, H		groupe amine	spectre 6 : C _{tet} -H et N-H avec 2 pics car 2 liaisons N-H dans la molécule
	Spectre 1) ambre d'ondes σ (cnr') 500 1000 500	Charles and the same of the sa	Nombre d'ondes e (cm²)	00 Transmittance(%) 50 4000 3 000 2 000	Nombredbndes 6 (cm²) 1500 1000 500
Transmittance(%)	Spectre 4)	Transmittance(%)	(Spectre 5)	50 Transmittance(%)	Spectre 6 Nombre d'ondes σ (cm ⁻¹) 1500 1000 500

1.4. SPECTRE IR D'ALCOOLS ISOMERES.

11)	T
pentan - 1 - ol	pentan - 2 - ol
H H H H H 	H - O - H - C

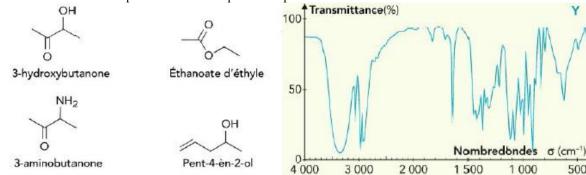

Ils sont isomères de constitution car ils ont même formule brute mais une formule développée différente. 12°) Quels sont leurs points communs et leurs différences ?



Les spectres sont quasi identique, impossible de

savoir de quelle molécule il s'agit. Il faut utiliser la RMN

1.5. MISE EN EVIDENCE DE LA LIAISON HYDROGENE


14°) Montrer que le spectre obtenu avec l'alcool pur est en accord avec la structure du pentan - 1 - ol. Le spectre présente des bandes correspondant aux liaisons :

 $\begin{array}{lll} \text{O-H (li\'e)}: & 3200 \text{ cm}^{\text{-1}} < \sigma < 3600 \text{ cm}^{\text{-1}} \\ \text{C}_{\text{tet}}\text{-H}: & 2800 \text{ cm}^{\text{-1}} < \sigma < 3000 \text{ cm}^{\text{-1}} \\ \text{C-O}: & 1050 \text{ cm}^{\text{-1}} < \sigma < 1450 \text{ cm}^{\text{-1}} \end{array}$

15°) Pour le pentan-1-ol dilué , la liaison hydrogène est libre car les molécules sont très éloignées les unes des autres : le pic correspondant à O-H libre se trouve aux alentours du nombre d'onde $\sigma=3500\,\mathrm{cm}^{-1}$ Les liaisons hydrogène sont moins fortes.

1.6. IDENTIFICATION D'UN COMPOSE

Le document fournit le spectre de l'un des quatre composés suivants:

 16°) A quel composé le spectre correspond-il ?

Le spectre correspond au 3-hydroxybutanone il contient des bandes correspondant aux liaisons :

- C=0
- O-H
- C-O
- C_{tet}-H