
CORROSION DES GOUTTIÈRES

Les précipitations sont naturellement acides en raison du dioxyde de carbone présent dans l'atmosphère. Par ailleurs, la combustion des matières fossiles (charbon, pétrole et gaz) produit du dioxyde de soufre et des oxydes d'azote qui s'associent à l'humidité de l'air pour libérer de l'acide sulfurique et de l'acide nitrique. Ces acides sont ensuite transportés loin de leur source avant d'être précipités par les pluies, le brouillard, la neige ou sous forme de dépôts secs. Très souvent, les pluies s'écoulant des toits sont recueillies par des gouttières métalliques, constituées de zinc.

<u>Données</u>: Masse molaire atomique du zinc : M(Zn) = 65.4 g.mol ⁻¹ Loi des gaz parfaits : PV = nRT Couples acide / base : H_3O^+ / $H_2O(\ell)$; $H_2O(\ell)$ / HO^- (aq); CO_2 , $H_2O(\ell)$ / HCO_3^- (aq) Le zinc est un métal qui réagit en milieu acide selon la réaction d'équation : $Zn(s) + 2H_3O^+ = Zn^{2+}(aq) + H_2(g) + 2H_2O(\ell)$

1. Suivi cinétique de la transformation

Pour étudier cette transformation, considérée comme totale, on réalise l'expérience dont le schéma simplifié est représenté sur la figure 1.

À l'instant de date t = 0 s, on verse rapidement, sur 0,50 g de poudre de zinc, V = 75,0 mL de solution

d'acide sulfurique de concentration en ions oxonium H_3O^+ égale à 0,40 mol.L⁻¹.La pression mesurée à cet instant par le capteur est P_i = 1020 hPa. La formation de dihydrogène crée une surpression qui s'additionne à la pression de l'air initialement présent. Les valeurs de la pression, mesurée à différentes dates par le capteur de pression, sont reportées dans le tableau page suivante :

t (min)	0	1,0	3,0	5,0	7,0	9,0	11,0	15,0	20,0	25,0	30,0	35,0
P (hPa)	1020	1030	1060	1082	1101	1120	1138	1172	1215	1259	1296	1335
t (min)	45,0	50,0	60,0	70,0	80,0	90,0	110,0	140,0	160,0	190,0	240,0	300,0
P (hPa)	1413	1452	1513	1565	1608	1641	1697	1744	1749	1757	1757	1757

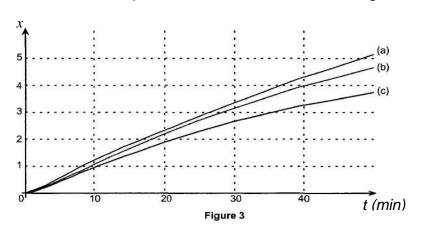
- 1.1. Compléter le tableau d'évolution du système en ANNEXE À RENDRE AGRAFÉE AVEC LA COPIE.
- 1.2. En déduire la valeur de l'avancement maximal x_{max} . Quel est le réactif limitant ?
- 1.3. On considère que le dihydrogène libéré par la réaction est un gaz parfait. À chaque instant la surpression (P P_i) est proportionnelle à la quantité $n(H_2)$ de dihydrogène formé et inversement proportionnelle au volume V_{gaz} de gaz contenu dans l'erlenmeyer : $(P P_i)V_{gaz} = n(H_2)RT$, où P_i représente la pression mesurée à la date t = 0 s, P_i la pression mesurée par le capteur et T_i la température du milieu (maintenue constante pendant l'expérience).
- 1.3.1. Quelle est la relation donnant l'avancement x de la réaction en fonction de (P P_i), V_{gaz} , R et T?
- 1.3.2. On note P_{max} la pression mesurée à l'état final. Écrire la relation donnant l'avancement x_{max} en fonction de

$$P_{\text{max}}$$
, P_i , V_{gaz} , R et T . En déduire la relation donnant l'avancement $x : x = x_{\text{max}} \left(\frac{P - P_i}{P_{\text{max}} - P_i} \right)$

La courbe donnant l'évolution de l'avancement x en fonction du temps est représentée sur la figure 2 en ANNEXE À RENDRE AGRAFÉE AVEC LA COPIE.

- 1.3.3. Vérifier à l'aide de la courbe la valeur de x_{max} trouvée au 1.2.
- 1.3.4. À l'aide du tableau des résultats, déterminer la valeur de l'avancement à la date t = 50,0 min. Vérifier cette valeur sur la courbe.

Donner la définition de la vitesse volumique de réaction. Comment peut-on déduire de la figure 2 l'évolution de la vitesse volumique de réaction au cours de la transformation chimique étudiée ? Décrire qualitativement cette évolution.

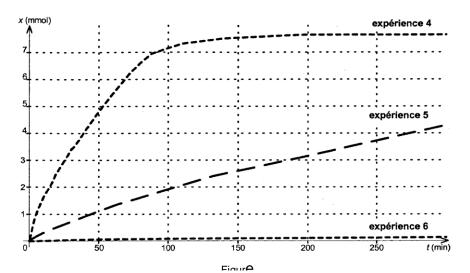

1.5 Calculer la vitesse de la réaction à t = 0 s. On notera cette vitesse v(0) et on l'exprimera dans l'unité suivante : $mol.L^{-1}.min^{-1}$.

2. Facteurs cinétiques

2.1. Influence de la concentration en ions oxonium *On reprend le montage précédent (figure 1) et on réalise les trois expériences suivantes :*

	Expérience 1	Expérience 2	Expérience 3
Température	25 °C	25 °C	25 °C
Masse initiale de zinc	0,50 g	0,50g	0,50 g
Forme du zinc	poudre	Poudre	Poudre
Volume de la solution d'acide sulfurique versée	75 mL	75 mL	75 mL
Concentration initiale en ions oxonium	0,50mol.L ⁻¹	0,25 mol.L ⁻¹	0,40 mol.L ⁻¹

Pour chacune des expériences 1, 2 et 3, on a tracé sur la figure 3 ci-dessous les trois courbes (a), (b) et (c)


représentant l'avancement de la réaction lors des 50 premières minutes. Associer à chacune des courbes de la figure 3 le numéro de l'expérience 1, 2 ou 3 correspondante. Justifier.

2.2. Influence de la forme du zinc (division et état de surface)On reprend le montage de la figure 1 et on réalise trois nouvelles expériences :

- avec de la poudre de zinc ;
- avec de la grenaille de zinc récemment fabriquée ;

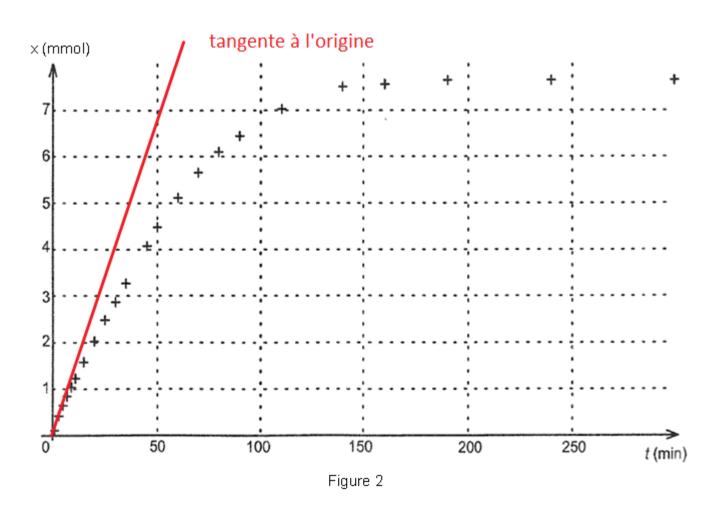
- avec de la grenaille de zinc de fabrication ancienne.

	Expérience 4	Expérience 5	Expérience 6
Température	25 °C	25 °C	25 °C
Masse initiale de zinc	0,50 g	0,50 g	0,50 g
Forme du zinc	poudre	Grenaille	grenaille de zinc de fabrication ancienne recouverte d'une couche de carbonate de zinc
Volume de la solution d'acide sulfurique versé		75 mL	75 mL
Concentration initiale en ions oxonium	0,50mol.L ⁻¹	0,50 mol.L ⁻¹	0,50 mol.L ⁻¹

On trace les courbes x = f(t) pour les trois expériences et on obtient la figure 4 page suivante :

2.2.1. À partir des courbes obtenues lors des expériences 4 et 5, indiquer quelle est l'influence de la surface du zinc en contact avec la solution sur la vitesse de réaction.

2.2.2. En milieu humide, le zinc se


couvre d'une mince couche de carbonate de zinc qui lui donne un aspect patiné. À partir des courbes obtenues, indiquer quelle est l'influence de cette couche de carbonate de zinc sur la vitesse de réaction.

ANNEXE À RENDRE AGRAFÉE AVEC LA COPIE

Question 1.1.

Tableau d'évolution du système

Equation chimique		Zn(s)	+ 2 H ₃ O⁺ =	Zn²+ (aq)	+ H ₂ (g) +	2 H₂O (ℓ)
Etat du système	Avancement (mol)	Quantités d	e matière (mo	ol)		
Etat initial	0	$n(Zn)_i$	$n(H_3O^+)_i$	0	0	en excès
Etat en cours de transformation	×					en excès
Etat final	X max					en excès

