
Devoir maison / modélisation d'une action mécanique par une force

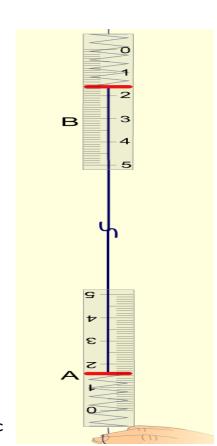
Exercice 1 : Modélisation d'une action mécanique par un vecteur force

1) Remplir le tableau suivant en dessinant, sans soucis d'échelle, les vecteurs forces agissant sur le système

système matériel	nom des vecteurs force	action de contact ou à distance ?
système : bille		
l'animation : pendule		

du vecteur force?

- 2) Représenter le vecteur force de tension \vec{T} exercée par la main sur le dynamomètre en prenant comme échelle : 1 cm représente un vecteur force de norme 1 N. (animation : représentation d'une force par une flèche)
- 3) Quelles sont les 4 caractéristiques

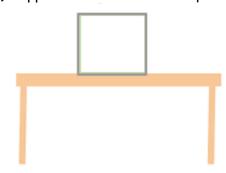

Exercice 2 : principe des actions réciproques (troisième loi de Newton). Animation

- 1) Enoncer le principe des actions réciproques.
- 2) Représenter, sans soucis d'échelle, le vecteur force exercée par le ressort A sur le ressort B, qu'on notera $\overrightarrow{F_{A/B}}$ ainsi que le vecteur force exercée par le ressort B sur le ressort A qu'on notera $\overrightarrow{F_{B/A}}$.
- 3) Le principe des actions réciproques est-il vérifié? Justifier.

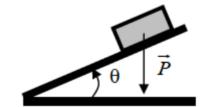
Exercice 3: Forces d'interaction gravitationnelle entre la Terre et la Lune La Terre et la Lune sont assimilables à des corps à répartition sphérique de masse dont les caractéristiques sont les suivantes :

Terre	Lune
$M_T = 5,98.10^{24} \text{ kg}$	$M_L = 7,34.10^{22} \text{ kg}$
R _T = 6380 km	R _L = 1740 km

- 1. La distance 'd' entre la surface de la Terre et de la Lune est $d=3,80\times10^5$ km. Ecrire l'expression littérale de la force de gravitation exercée par la Terre sur la Lune $F_{T/L}$. Calculer sa valeur.
- 2. Comparer la valeur de la force exercée par la Lune sur la Terre $F_{L/T}$ avec la force exercée par la Terre sur la Lune notée $F_{T/L}$.


3. Lors de la dernière mission lunaire (Appolo XVII), les astronautes ont ramené m_R = 117 kg de roches. Quel était le poids de ces roches au départ de la Lune P_L , puis à l'arrivée sur Terre P_T ?

Données : $G = 6,67.10^{-11} \text{ N.kg}^{-2}.\text{m}^2$


Intensité du champ de pesanteur terrestre : g_T = 9,80 N/kg ; Intensité du champ de pesanteur lunaire : g_L = 1,62 N/kg

Exercice 4 : vecteur poids \vec{P} (animation : le dynamomètre) et réaction \vec{R} du suuport

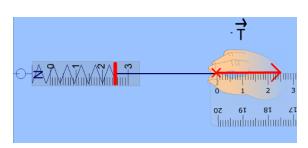
1) Rappeler les 4 caractéristiques du vecteur poids d'un solide de centre d'inertie G.

- 2) Soit un solide de masse m = 20 kg posé sur une table. a) Calculer la valeur du poids P du solide. La valeur du champ de pesanteur terrestre vaut $q = 9.8 \text{ N.kg}^{-1}$.
- b) A quelle autre force le solide est-il soumis?
- c) Représenter les forces en prenant comme échelle 1 cm <-> 100 N.
- 3) La table est maintenant incliné. Le solide est immobile. Représenter le vecteur réaction

 \vec{R} sur le schéma ci-dessous. Sa direction est-elle perpendiculaire au plan ? Pourquoi le solide ne glisse pas ?

4) La valeur du poids est peu différente de celle de la d'attraction gravitationnelle exercée par la Terre sur le corps :

$$P = mg = \frac{Gmm_T}{d^2}$$

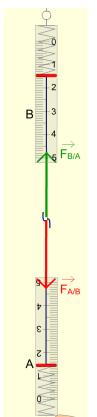

Quelle est l'expression de la valeur de g? Comment varie le poids P lorsque la distance d'entre l'objet et le centre d'inertie de la Terre augmente?

Correction

Exercice 1 : Modélisation d'une action mécanique par un vecteur force

1)

système matériel	nom des vecteurs force	action de contact ou à distance?
•	\vec{P} : vecteur poids	action à distance
₹ F	$ec{T}$: vecteur tension du fil	action de contact
système : bille		
l'animation : pendule		


2) 1 cm <-> 1 N.

La force de tension vaut T = 2,5 N. La longueur du vecteur force vaut $\mathbf{L}(\vec{T})$ = 2,5 cm .

3) 4 caractéristiques du vecteur force :

direction: droite horizontale sens: de la tige vers la main valeur ou norme: T(N) = 2.5 N

\point d'application: le point de contact entre la main et la tige

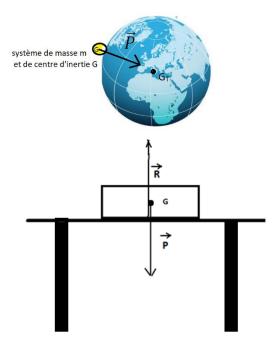
Exercice 2 : principe des actions réciproques (troisième loi de Newton)

- 1) Lorsqu'un système matériel A exerce une force $\vec{F}_{A/B}$ sur un système matériel B, alors celui-ci exerce sur le système matériel A une **force** $\vec{F}_{B/A}$. Ces 2 **vecteurs forces** sont opposés (même direction et même norme mais sens opposé) $\vec{F}_{A/B} = -\vec{F}_{B/A}$
- 2) Le principe des actions réciproques est-il vérifié car $\vec{F}_{A/B} = -\vec{F}_{B/A}$. Les 2 forces ont même valeur, même direction, mais des sens opposés.

Exercice 3:

1. Vidéo

$$F_{T/L} = \frac{G.M_L.M_T}{\left(R_T + R_L + d\right)^2} = \frac{6.67x10^{-11}x5.98x10^{24}x7.34x10^{22}}{\left((3.80x10^5 + 6380 + 1740)x10^3\right)^2} = 1.94x10^{20} N$$


2. D'après le principe d'interaction les deux valeurs des forces sont égales : $F_{L/T} = F_{T/L} = 1,94 \times 10^{20} \text{ N}$ Vidéo

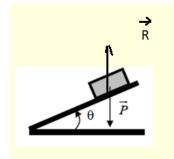
3)

Sur la Lune : P_L = = m_R . g_L = 117x1,62 = 190 N Sur la terre : P_T = m_R . g_T =117x9,80 = 1150 N

Exercice 4 : vecteur poids $\vec{P}(animation : le dynamomètre)$ et réaction \vec{R} du support

1) Les 4 caractéristiques du vecteur poids d'un solide de centre d'inertie G.

 $|direction: la droite GG_T|$


sens: de G à G_T (centre d'inertiede la Terre) po int d'application : G

|valeur: P = m.g|

- 2) Soit un solide de masse m = 20 kg posé sur une table.
- a) Calculer la valeur du poids P du solide.

 $P = m.g = 20 \times 9.8 = 2.0 \times 10^{2} \text{ N}$

- b) Le solide est soumis la réaction \vec{R} de la table.
- c) Les 2 vecteurs forces sont opposés. Ils mesurent 2 cm puisque leur norme vaut 200 N et que 1 cm représente 100 N.
- 3) La direction du vecteur réaction \vec{R} n'est plus perpendiculaire au plan car le plan n'est pas lisse il exerce une force de frottement, qui empêche le solide de glisser.

4)
$$P = mg = \frac{G.m.m_T}{d^2} \Rightarrow g = \frac{G.m_T}{d^2}$$

Lorsque la distance d'entre l'objet et le centre d'inertie de la Terre augmente, le champ de pesanteur g diminue donc le poids P = m.g diminue.