Exercice 2 : Tour de France (d'après Hachette) (2,5 points) Au tour de France 2010, l'étape Bagnères de Luchon-Pau, longue de 187 km a été remportée par le français Pierrick Fedrigo en 5h 32 min. On se propose de calculer sa vitesse moyenne lors de cette étape.				
·				Ì
 Rappeler la formule qui permet de calculer une vitesse moyenne. Préciser les unités si on veut exprimer cette vitesse en km.h⁻¹. 	1/2			1
2. Montrer que 32 min ≈ 0,53 h.			1/2	1
3. Exprimer en heure et par un nombre décimal, la durée de cette étape.		1/2		1
4. Calculer la vitesse moyenne lors de cette étape en km.h ⁻¹ puis en m.s ⁻¹ .	1/4	3/4		1
	С	Α	R	Со
Exercice 3 : Le Joggeur (d'après Nathan) Un joggeur a un mouvement de translation rectiligne. Sur le schéma ci-après sont données les positions successives de son centre de gravité toutes les deux secondes. Un carreau fait 1 mètre de côté. Sens du mouvement				
Sens du mouvement				1
Est-ce un mouvement de translation rectiligne uniforme ? Justifier.		1/4		1/4
2. Calculer la vitesse du centre de gravité aux positions C ₂ , C ₃ , C ₄ et C ₅ (en m.s ⁻¹)	1/4	1		1
 Calculer l'accélération du centre de gravité du joggeur aux positions C₃ et C₄ (en m.s²). 	1/4	1/2		1
4. Est-ce un mouvement rectiligne à accélération constante ? Justifier.		1/4		1/4
 Exercice 4: Mouvement circulaire uniforme On enregistre le mouvement d'un solide à des intervalles de temps égaux à τ = 20 ms. OA₁ = 35 cm. 1. Pourquoi peut-on dire que le mouvement est uniforme? 				1/2
2. Déterminer la vitesse angulaire en A ₂ .	1/4	1/4		, <u> </u>
3. Quel serait l'angle balayé par le solide en 15 ms ? (on prendra $\omega = 39 \text{ rad.s}^{-1}$)			1/2	Ì
4. Déduire de la question 2., la vitesse instantanée en A ₂ .			1/2	ii